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Diclectric response of the degenerate plasma of charged
bosons in static-local-field approximations
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Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

Received 12 July 1994

Abstract, The dielectric screening function £(k, @) of the fluid of charged bosons at zero
temperature is evaluated in a range of low-to-intermediate coupling strength, in view of recent
data on static screening and fluid structure from quantum Monte Carlo methods. Correlations
beyond the random phase approximation are included within a class of approximations which
are well known for the electron fluid, i.e. by introducing 2 frequency-independent local field
factor to be determined through self-consistency requirements connecting various aspects of the
physics contained in the dielectric function. The static diefectric function g(k, 0) is negative
over a range of wavenumbers at all values of the density, leading to oscillatory screening
of a foreign charge and to an effective long-range attraction betwesn equi-charged impurities.
Quantitative agreement with the Monte Carlo data on static screening is achieved by imposing
self-consistency on the compressibility of the flnid in addition to self-consistency on the pair
distribution function. Good agreement is also obtained on the pair distribution function and
the correlation energy. Within the present class of approximations, the dispetsion relation of
longitudinal excitations takes the Feynman form, starting at the plasma frequency with a negative
dispersion ceefficient and going through a minimum before ending at the single-particle recoil

frequency.

1. Iniroduction

The fluid of point-like spinless charged bosons embedded in a uniform neutralizing
background has drawn some attention in the literature as a model in quantum statistical
mechanics with possible applications to superconductors and to systems of astrophysical
interest. Quantum Monte Carlo studies of the boson ground state [1,2] have revealed a
scenario paralleling that of the fermion ground state as a function of the dimensionless
length parameter r; = ro/ap, where ry is related to the particle number density n» by
ro = (4wn/3)~13 and ap is the Bohr radius. Starting from the ideal Bose gas at rs = 0,
correlations in the fAuid state grow with increasing r; till Wigner crystallization occurs at
rs = 160. More recently, the static dielectric function £(k, 0) has been directly determined
by quantum Monte Carlo methods [3] from the response of the system to an imposed static
sinusoidal electric potential at various values of the wavenumber k and at values of rg
in the fluid and in the crystalline phase. The results have been compared to the random
phase approximation (RPA) for the weakly coupled fluid and to classical lattice values for
the low-density crystal. Data on the pair distcibution function g(r) over a wide range of r;
are also available [3,4].

On the theoretical side, early evaluations of the ground state energy and the spectrum
of elementary excitations in the high-density limit [5, 6], were followed by variational
calculations of the ground state over a wide range of r; using Jastrow wavefunctions [7—
9,1]. Hore and Frankel [10] have given a full analytic evaluation of the dynamic dielectric
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function g(k, ) of the fluid at arbitrary temperature within the RPA. This approximation
appears to be particularly restrictive for the fluid of interacting bosons at zero temperature,
where the ideal boson gas is fully condensed in the zero-momentum state. The role of
correlations beyond the RPA has been explored by Caparica and Hipolito [11] and by Gold
[12] within the so-called $TLS approximation as proposed earlier [13] for the electron fluid,
However, a systematic study of alternative theoretical appreaches to correlations in the
dielectric response of the charged boson fluid is as yet lacking and is indeed timely in view
of the recent evidence from simulation studies.

1t is the purpose of the present work to present such a study. We comparatively examine
the results of alternative schemes treating correlations, as in earlier work on the electron
fluid {13~15], through a local ficld factor taken as a frequency-independent function G(k)
to be determined with the help of self-consistency requirements. The physical properties of
main interest are the static dielectric function, with special attention to its long-wavelength
limit where the question arises of consistency with the equation of state, and the radial
distribution function and correlation energy. In addition we use our results on dynamic
screening to evaluate the dispersion relation for longitudinal excitations in the fluid. As one
may expect, there are striking differences in physical behaviour between the charged boson
fluid and the charged fermion fluid in the regime of low-to-moderate coupling strength, but
similaritiecs emerge as the density decreases into the strong coupling region [16].

2. Dielectric response

The reciprocal of the dielectric function is defined from the response of the fluid to a
weak external potential Vi(r, 1) due to a distribution of charges varying in space and time
with a wavevector & and a frequency @ [17]. Time-dependent density functional theory
[18] ensures that within the linear response regime, the Fourier transform n(k, @) of the
induced density change dn(r, r) can be related to the sum of the Hartree potential and of
the short-range correlation potential through the susceptibility xo(k, @) of the ideal gas

n(k, w) = xolk, o Ve(k, @) + (e’ /B[] — Gk, )In(k, w)}. (2.1)

Here, the short-range correlation potential has been expressed through a dynamic local field
factor G{k, w) defined by

2
- 4’;; Gk, ©) = f dtr—7) [ d(e =) fullr — '), t = ') explik- (r — ) —iw(t — 1]
2.2
where
52 Adln(r,
fe(lr =7t =)= Lz, 1) Intr,ty=n- (2.3)

anir, )én(r’, )

Ailn(r,1)] is the correlation part of the action integral as a functional of the perturbed
density, its second functional derivative being taken in (2.3) at the initial vnperturbed density
n. Equation (2.1) leads to

(dm e/ K)ok, @)
1+ (A et/ DGk, w)xo(k, ®)

ek, w)=1— 2.4
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The susceptibility of the ideal Bose gas at zero temperature has the simple expression [10]
Xo(k, ) = (nk* [m)[w (@ + in) — (k*/2m)*] ™! (2.5)

with 7 & positive infinitesimal.
The van Hove dynamic structure factor S{k, @) giving the excitation spectrum of the
fluid is related to the dielectric function by

Bk

2rne? (2.6)

Sk, @)=

1
&{w) Im Py

&{(w) being the Heaviside step function. The static structure factor S(k) follows by
integration over energy transfer

Sk) = f = d—wS(k, @) A 2.7

oo 2T

"and hence the radial distribution function g(r) is obtained by Fourier transform
1 .
g0 =1+~ Zk:[soc) — 1lexpGk - 7). (2.8)

The latter function, being by definition the probability that two particles be found at a
relative distance r at any given time, allows an evaluation of the mean potential energy Epo:
per particle

2 2 2
oy = %n f dr %[g(r) —1]= %Zk: ’1’;" IS¢ — 1. 2.9)

Finally, the ground state energy Eg is obtained by integration of Epy over the coupling
strength. The virial theorem ensures that the coupling strength is measured by r;.

A pumber of sum rules and exact limiting behaviours are known for e(k, @) and G(£, @)
in the electron fluid [19-21] and are immediately translated to the boson plasma. Here we
. note for later reference the following exact relations:

(i) the compressibility sum rule, which may be expressed as

Gk, 0) = yk* (krg < 1) (2.10)
with
— 2 . 2y—1 i _ i
y = (4mn”e’} [Ku K] 2.11)

where K and Kj are the compressibility of the real fluid and of the ideal gas. Since K;' =0
for the Bose gas, the role of comelations in adding to the Coulomb repulsion an effective
attractive interaction between the particles is equivalent to the inequality X < Oatall ry > 0
for bosons.

(ii) the first and third spectral moment sum rules

k2 o0 i nk?
= —— Im Qo = — - 2.12
M) dmle? [_m @ ek, ) m (2.12)
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and
k2 oo 3 1
—— Im———d
MO =z ) . P
nk? | ,  2k% a\?  of . en
- lmp + 2Bt (3e) +2 3 @ BFASE - 0D - S
(k)
(2.13)
where w, = (4wne?/m)'/? and Ey, is the mean kinetic energy per particle.
(iii)-the Kimbail-Niklasson relations
dilng(r) 1
r=0 = 2.14
& lr=0 = ag (2.14)
and
lim S =1— g0 2.15
lim S(k) = rgk“g ). (2.15)

Equation (2.15) implies a self-consistency requirement between the asymptotic behaviour
of the structure factor and the value of g(0) obtained from (2.8).

3. Static-local-field approximations

The RPA is obtained from (2.4) by setting G(k, @) = 0. The class of approximations that we
examine in the following sections instead neglects the frequency dependence of the local
field factor. From (2.4) and (2.5) we then have the excitation spectrum as

1
Im ek, w)

= —Jrcugsign(.:a)a(m2 - w%) (3.1)

where
o = (@1 = GRI+ (B> [2m)?} 72, 3.2)
Equations (2.6) and (2.7) yield
S(k) = k> {2ma, (3.3)

which is the Feynman relation. Thus, self-consistency between dielectric response and
liquid structure leads for the boson plasma to the relation between S(k) and G(k) given in
(3.2) and (3.3).

The approximate closures that we evaluate below involve a further explicit expression
of the local field factor in terms of the static structure factor. We consider, first of all, the
STLS approximation [13] in which this expression is

1 k-
GstLs(k) = onyn f qzq [5(k —gl) — 11dg. (3.4)
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As mentioned in section 1, this approximation has already been explored for the boson
plasma by Caparica and Hipolito [11] and by Gold [12]. We consider next the approximation
proposed by Vashishta and Singwi [14]

Gs(h) = (1 +an%) Gsis®) (3.5)

where a is a parameter which allows one to add self-consistency on the compressibility
through (2.10) and (2.11), with X evaluated from the ground-state energy. Finally, we also
illustrate the results obtained in the Pathak—Vashishta approximation [15]

- 1 k- q)?
Grv(t) = s [ S5 EH150k — g - S@)a (6)

which satisfies the sum rule (2.13) with the exact mean kinetic energy being replaced by
its ideal-gas value (Ey, = 0 for the ideal Bose gas). We note that all these approximations
miss the k2 term discussed by Holas [21] in the large-k behaviour of G(k, 0) and that only
the STLS approximation satisfies consistency between the value of g(0) and the coefficient
of the k™ term in (2.15).

3.1. Numerical procedure

The numerical results that we present in the following sections have been obtained by
achieving self-consistency between structure factor and local field factor through an iterative
method. At each value of r; we start from the RPA value G(k; r;) = 0 and continue iterations
till input and output for G(%; r.) differ by an amount of order 10>, The rate of convergence
is increased by using as input at each step a weighted average of the outputs from the two
previous steps.

The additional self-consistency with the compressibility sum rule in the vS scheme poses
some delicate numerical problems in the evaluation of the derivative G(k; r;) with respect to
7. Slightly different results are obtained when the derivative is evaluated as the incremental
ratio from two neighbouring values of r;, as was done in the original calculation on the
electron fluid [14], or by using input from three or more neighbouring values of .. These
errors affect the results for g(r) at small r as well as those for G(k) at large k and become
increasingly relevant with increasing r; above r; & 5. For this reason the detailed results
that we report in the following sections for the vs scheme do not extend beyond r; = 30.
They are based on the original two-point-incremental-ratio procedure and our numerical
difficulties will be evident in spurious oscillations in g(r) at small r. Such oscillations may
be smoothed away by allowing the self-consistency parameter ¢ to become a function of
k with a smooth cut-off at large k, thus also recovering seif-consistency with the Kimball-
Niklasson refation (2.15). However, the focation of the cut-off is arbitrary and, of course,
the numerical results depend on it.

4. Local field factor, fluid structure and correlation energy

Figure 1 reports our results for the local field factor G(k) in the STLS and VS approximations
over a range of r; from 1 to 30, A peak at kry =~ 4 develops in G(k) with increasing r; and
is especially marked in the V$ result. According to (2.1}, the effective interaction arising
from correlations between pairs of patticles overbalances their direct Coulomb repulsion
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in the range of wavenumber where G(k) is above unity, leading here to a net effective
attraction between the particles. The emergence of the peak in G(k) is a precursor of
Wigner crystallization, the first star of reciprocal lattice vectors of the BCC lattice being in
approximate correspondence with the position of the peak. Reference should be made to
the work of Senatore and Pastore [22] in relation to Wigner crystallization of the degenerate
electron fluid. The corresponding results for the static structure factor §(k) are shown in
figure 2, the growing main peak in this fanction being clearly related to the peak in G (k).

G (k)

S(k)

STLS VS
I-ZFJJI'JJFIIIIIIEII_,_!_- TJIII‘(‘IK!I‘IE[[III__
- - R R w_ I
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Figure 1. Local field factor (k) versus krp at various values of r; in 57LS and vs.
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Figure 2. Structure factor S(%) versus krg at various values of rg in STLS and vs.

The parameter a obtained from self-consistency on the compressibility in the vS scheme
shows weak dependence on r;, our numerical results being accurately reproduced by the fit

a(rg) = 0.833 — 0.007 47+ + 6.63 x 10712 0 < 75 < 30).

@4.1)
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These values are similar to those obtained for the electron fluid [14] and again exceed the
value ¢ = 1/2 that would apply to classical plasma treated in the same approximation.
From this element of self-consistency we expect the vs results for G(k) to be quite reliable
in the low-£ region (see section 5 below).

In fact, the Vs scheme also yields satisfactory results for the pair distribution function,
excepting the small-r region as discussed already in section 3.1, This is shown in figures 3
and 4, which report g(r) at various values of r; in comparison with quantum Monte Carlo
data from Sugiyama et al (13] and from unpublished calculations by Moroni. It is especially
rewarding that the V8 scheme reproduces the emergence of a first-neighbour sheil from
Coulomb repulsions with increasing coupling strength. The STLS results are somewhat more
. accurate only at low r; (see in particular the case r; = 1 in figure 3), while the structural
predictions of the PV approach are quite poor at all ;. We infer from this comparison with
the simulation data that the peak structures shown by the vs Gk} and S(k) in figures 1 and
2 are quite realistic.

I[IIi]_IIIfllll IIIII_I_IIIIIII.I-

- - - .

||l||;111[|rr| IJILf_III_I_lliJ_III

0 1 2 30 1 2 3

r/r, r/r,
Figure 3. Radial distribution function g(r} versus r/rp at r; = 1 and ry = 10 in STLS, vS and
pv, compared with quantum Monte Carlo data from [3].

In summary, the quantitative usefulness of the approximations that we have examined is
limited to the range of low-to-intermediate coupling strength, with a clear preference for the
Vs approach from the structural point of view notwithstanding its numerical inaccuracies in
the deep part of the Coulomb hole. The STLS and VS approximations are also reasonably
accurate in their predictions on the ground-state energy Eg(rs) and on the pressure P(rg).
A compartison of our results with those obtained by variational methods and with Monte
Carlo data is given in tables 1 and 2. Table 3 reports the self-consistent values of the inverse
compressibility in the Vs approximation.

5. Stafic screening
We have already noticed in section 2 that the compressibility of the boson plasma is negative

at all r; > 0, the ground-state energy being entirely due to correlations. In fact, the static
dielectric function is negative at all r; > 0 over a range of reduced wavenumber kry which
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Figure 4. Radial distribution function g(r) versus r/rg at ry = 20 and r; = 30 in $TLS, VS and
pv, compared with quantum Monte Carlo data from S Moroni (unpublished).
Table 1. Valees of —Egs(rs) for the boson plasma (Rydberg/particle).
Dielectric approach Monte Carlo Variational
Fs STLS vs Py ! ca? 1g? !
0.1 4.482 4.496 4.500 —_— — . 4.489 _
1 0.7712 0.7830 0.7870 — — 0.7767 0.7810
2 0.4472 0.4578 0.4619 0.45357 0.4531 0.4516 ¢.4547
3 03232 0.3326 0.3370 — — 0.3270 0.3288
5 0.2129 0.2207 0.2253 — 0.21663 0.2159 02170
1¢ 0.1188 0.1238 0.1289 — 0.12150 0.1209 0.1216
20 0.064 86 0.0675 0.0724 0.06632 0.06666 0.06626 0.06667
30 0.04507 0.04674 005112 —_ — 0.04619 0.4644
50 0.02822 0.02921 0.03259 — - 0.026027 — —
60 0.02382 _ —_ — —_ — 0.024 69
100 0.01473 _ — —_ 0.015427 0.01533 0.01535

Table 2. Values of —P(r;}/n for the boson plasma (Rydberg/particle).

Dielectric approach
rs STLS Vs PV Variational!
0.1 1.12¢% 1.129 1.129 —
1 0.2002 0.2007 0.2007 0.20105
2 0.1185 0.1193 0.1192 0.11932
3 0.0870 0.08799 0.0878 —_

5 0.05868 0.05985 005967  0.059115
10 003394 0.03519 003515 0.034 488
20 0.01922 0.02019 0.02047 0.019544
30 0.01362 0.01437 001480 —

60 0.007405  — — 0.007532
80 0.005711 — — 0.005817
100 0.004 656 — —_— 0.004 750
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Table 3. Self-consistent values of —[nX (r-s)]‘l for the boson plasma in the vs approximation
(Rydberg/particle).

r 0.1 1 2 3 5 10 2 30
—[rE(9]"! 141 0251 0049 0110 00750 00443 00258 00184

broadens with increasing r. This is shown in figure 5, reporting 1/e(k, 0) in the V§ approach
at values of r, from 1 to 30. Figure 6 compares our theoretical results for 1/e(k, Oy atrs = 1
and r; = 10 with the quantum Monte Carlo data of Sugiyama et g [3]. It is clear that the
Vs achieves quantitative agreement with the simulation data, within their statistical accuracy
and over the restricted range of wavenumber that they cover. Unfortunately, at r, = 10
this range does not extend much beyond the parabolic regime shown in (2,10} and it would
be important to extend the simulation to higher values of k for a full test of the theory. It
is also evident that the inclusion of short-range correlations through a local field factor is
important for bosons even at low coupling. The RPA sets K~! = 0 in the dielectric function
and hence misses completely the range of negative values for £(k, 0).

T~
<
X
S
w
\
b |
05 /
g 0.3 0e N .r
: T T T ; L B ) N \_\ !'] wrrvsemraEaan rs=5 :
S I 1P A A r.=10 _
-l —— 1 =20+
I A 0 R N - r,=30 ]
] 1 L 1 l
0 6

Figure 5. Reciprocal of the static diclectric function 1/e(k, 0) versus kry at various values of
7y in vs. The inset gives an enlarged view of the small-krg region. .
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Figure 6. Reciprocal of the static dielectric function 1/2(k, 0) versus krg at s = 1 and ry = 10
in RpA, STLS, v§ and PV, compared with quantal simulation data from [3] (dots with error bars
and rectangles are from variational Monte Carlo and from diffusion Monte Carlo, respectively).

The behaviour of the static dielectric function shown in figures 5 and 6 implies
overscreening of a charged impurity. The local pile-up of screening charge in the immediate
neighbourhood of the foreign charge exceeds it and hence the displaced charge density
oscillates in space, the local enbancements and depletions of charge being overemphasized
as a consequence of the statistics. Evidently, the effective interaction between egui-charged
impurities in the boson fluid that one would estimate within a linear approximation is
attractive over a substantial range of wavenumber, corresponding to distances which tend
with increasing r; to extend down to the mean boson—boson distance.

The asymptotic large-r behaviour of the screening charge density ng(r) around a point-
like impurity carrying unitary charge is [11]

2

ns(r) — %—;(1 — 2 2 gin[br(1 + 622 exp[—br(1 — ybH)1/?] (5.1)

where bro = (3r;)/%. Figure 7 illustrates the behaviour of the quantity 4 r2n,(r) in the v$
approximation at vatious values of r;. For instance, at r; = 10 we find by integration of
4mrin,(r) between its successive nodes that the amounts of screening charge contained in
the first four shells around a unitary foreign charge are 1.57, —0.72, 0.18 and —0.04.
The inclusion of the factor ri/* in the abscissa in figure 7 is suggested by (5.1) and
places the nodes of the screening charge distribution in approximate coincidence at different.
values of r.

6. Longitudinal excitations

A static-local-field approximation is clearly a most drastic one in the evaluation of the
excitation spectrum. As is shown in (3.1) and (3.2), it yields for the bosen plasma a
longitudinal excitation with a dispersion curve which goes continuously from the plasma
frequency @, at k — 0 to the single-particle recoil frequency sk?/2m at k ~— co. One may
recall the well known limitations of the Feynman formula in accounting for the inelastic
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r ri4/r,

Figure 7. Screening charge density 4rin,(r) around a heavy impurity versus (r/ro)rs’" at
various values of r; in vs,

neutron scattering spectrum from liquid “He {23]. The observed spectrum contains a branch
of collective excitations, including phonons (replaced by plasmons in the boson plasma)
and rotons, as well as a broad multi-excitation component. The former branch flattens
out and broadens away at about twice the frequency of the roton minimum, while the
central frequency of the multi-excitation band increases with & and terminates at the recoil

frequency.
Equations (3.2) and (2.10) yield the dispersion of the plasmon at long wavelengths as

o = wp(l— L1yk* +--). (6.1)

Thus, within the present class of approximations the dispersion coefficient is directly related
to the compressibility of the fluid and is negative at all values of r;. In a strongly correlated
system less energy is needed to excite a vibrational mode in which the particles are partly
localized. Notice that in the RPA the leading dispersion term is positive and of order k*.
Bearing in mind that our results for the full dispersion curve of longitudinal excitations
can only have an illustrative value, we report them in figure 8 at various values of r; in
the v$ approximation. It is easily seen that wy < wp over the whole range of wavenumbers
where the static dielectric function is negative: indeed, the latter may be written in the form

1/2(k, 0) = 1 — w} e}, 6.2)



8806 S Conti et al

1.4 3 L ¥ T i L} ¥ ] ] | 3 i I ¥ L) ¥ 1) ¥ I 1 i 1{ ]
i A
i E
1.2 -
B J
a, - -
3
< : -
3 )
. l
I i ]
0.8 |
L u
I_ i
0-6 1, L I [ I 1 L 1 t_l 1 1 1 1 l 1 L1 1 ] 1 I 1 1 1 I
0 1 2 3 4 5

k r,

Figure 8. Normalized excitation frequency ay/ep versus krp at various values of rg in vs,

Thus, the calculated dispersion curves go through a minimum, whose position and depth in
reduced units increase with rs, before rising rapidly at higher wavenumbers on their approach
to the single-particle parabola. Similar but quantitatively different results are obtained in
the STLS and PV approximations.

7. Summary and closing remarks

We have seen that short-range correlations play a major role in the static and dynamic
dielectric response of the boson plasma at zero temperature and that useful results can
be obtained at low-to-moderate values of the coupling strength by means of approximate
treatments that were developed quite some time ago for the degenerate electron fluid. With
regard to the relative merits of the various expressions that we have considered in relating the
local field factor to the structure of the fluid, we have found again that the thermodynarnic
self-consistency embodied in the vs scheme is crucial for quantitative accuracy in the
evaluation of static screening, at least at relatively long wavelengths, It also leads to
substantial improvement in the description of how the local structure of the plasma develops
with increasing coupling strength.

The dispersion curves for longitudinal excitations that we have reported for the charged
boson fluid show some remarkable qualitative features, but also provide an illustration of
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the limitations of our approach when they are contrasted with the more complex dynamics
of liquid “He. One may learn from them that there is a need to include some account of the
frequency dependence of the correlation field factor, together with an explicit account of the
correlations in the particle motions that are responsible for the real distribution of momenta,
Some progress on these aspects of the theory has recently been made for two-dimensional
electron fluids [24] and a parallel theoretical effort on bosons and fermions may be helpful
to disentangle the effects due to Coulomb correlations and those due 1o exchange and the
exclusion principle.
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