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Dielectric response of the degenerate plasma of charged 
bosons in static-local-field approximations 

S Conti, M L Chiofalo and M P Tosi 
S ~ o l a  Normale Superiore, Pi- dei Cavalieri 7.1-56126 Pi- I d y  

Received 12 July 1994 

Abstraci The dielectric screening function E(k, o) of &e fluid of charged bosons at zero 
temperahlre is evaluated in a range of low-to-intermediate coupling strength, in view of recat 
data on static screening and Euid suuchlre f” quantum Monte Carlo methods. Correlations 
beyond the random phase approximation x e  included within a class of approximations which 
are well known for the electmn fluid, i.e. by inmducing a frequency-independent local field 
factor to be determined through selfconsistency requirements connecting various aspecu of the 
physics contained in the dielectric function. The static dielectric function ~ ( k ,  0) is negative 
over a range of wavenumbers at all values of the density, leadiog to oscillatory -ning 
of a foreign charge and to an effective long-range amaction behveen q u i c h q e d  impurities. 
Quantitative agreement with the Monte Carlo data on static screening is achieved by imposing 
selfconsistency on the compressibility of the fluid in addition to self-consistency on the pair 
distribution function. Good agreement is also obtained on the pair distribution function and 
the correlation energy. Within the present class of approximations, the dispersion relation of 
longihldinal excitations takes the F e y ”  fom, statting at the plasma frequency witi? a negative 
dispersion coefficient and going through a minimum before ending at rhe singleparticle recoil 
“CY. 

1. Introduction 

The fluid of point-like spinless charged bosons embedded in a uniform neutralizing 
background has drawn some attention in the literature as a model in quantum statistical 
mechanics with possible applications to superconductors and to systems of astrophysical 
interest. Quantum Monte Carlo studies of the boson ground state [1,2] have revealed a 
scenario paralleling that of the fermion ground state as a function of the dimensionless 
length parameter r, = ro/ao, where ro is related to the particle number density n by 
ro = (4nn/3)-’fi and a0 is the Bohr radius. Starting from the ideal Bose gas at r, = 0, 
correlations in the fluid state grow with increasing r, till Wigner crystallization occurs at 
r, M 160. More recently, the static dielectric function E(k, 0) has been directly determined 
by quantum Monte Carlo methods [3] from the response of the system to an imposed static 
sinusoidal electric potential at various values of the wavenumber k and at values of r. 
in the fluid and in the crystalline phase. The results have been compared to the random 
phase approximation (RP.4) for the weakly coupled fluid and to classical lattice values for 
the low-density crystal. Data on the pair distribution function g(r)  over a wide range of r, 
are also available [3,4]. 

On the theoretical side, early evaluations of the ground state energy and the spectrum 
of elementary excitations in the high-density limit [5,6], were followed by variational 
calculations of the ground state over a wide range of r, using Jastrow wavefunctions [7- 
9,1]. Hore and Frankel [lo] have given a full analytic evaluation of the dynamic dielectric 
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function &(IC, U )  of the fluid at arbitrary temperature within the .MA. This approximation 
appears to be particularly restrictive for the fluid of interacting bosons at zero temperature, 
where the ideal boson gas is fully condensed in the zero-momentum state. The role of 
correlations beyond the MA has been explored by Caparica and Hipolito [ l l ]  and by Gold 
[I21 within the so-called slz~ approximation as proposed earlier [13] for the electron fluid. 
However, a systematic study of altemative theoretical approach@ to correlations in the 
dielectric response of the charged boson fluid is as yet lacking and is indeed timely in view 
of the recent evidence from simulation studies. 

It is the purpose of the present work to present such a study. We comparatively examine 
the results of alternative schemes mating correlations, as in earlier work on the electron 
fluid [13-151, through a local field factor taken as a frequency-independent function G(k) 
to be determined with the help of self-consistency requirements. The physical properties of 
main interest are the static dielectric function, with special attention to its long-wavelength 
l i t  where the question arises of consistency with the equation of state, and the radial 
distribution function and correlation energy. In addition we use our results on dynamic 
screening to evaluate the dispersion relation for longitudinal excitations in the fluid. As one 
may expect, there are striking differences in physical behaviour between the charged boson 
fluid and the charged fermion fluid in the regime of low-to-moderate coupling strength, but 
similarities emerge as the density decreases into the strong coupling region [XI. 

2. Dielectric response 

The reciprocal of the dielectric function is defined from the response of the fluid to a 
weak external potential Ve(?-, t )  due to a distribution of charges varying in space and time 
with a wavevector IC and a frequency w [17]. Tune-dependent density functional theory 
[18] ensures that within the linear response regime, the Fourier transform n(IC, w )  of the 
induced density change 6n(r, t )  can be related to the sum of the H m e e  potential and of 
the short-range correlation potential through the susceptibility xo(k, w )  of the ideal gas 

n(k, 4 = x o k  w)IK(IC, w )  + (4neZ/k2)L1 - G(k, w)ln(k, 0)). (2.1) 

Here, the short-range correlation potential has been expressed through a dynamic local field 
factor G(k,  w )  defined by 

(2.2) 

d(t - t') fC(l.r - 7'1, t - t') exp[ik * (T - T') - io@ - t')] 4ne2 
k2 

- -G(k, U )  = 

where 

A,[n(r, t ) ]  is the correlation part of the action integral as a functional of the perturbed 
density, its second functional derivative being taken in (2.3) at the initial unperturbed density 
n. Equation (2.1) leads to 

(2.4) 
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The susceptibility of the ideal Bose gas at zero temperature has the simple expression [lo] 

(2.3 

The van Hove dynamic structure factor S(k, a) giving the excitation spectrum of the 

~o(k, w )  = (nk2/m)[w(w + iq) - ( f ~ k ~ / Z m ) ~ ] - '  

with q a positive infinitesimal. 

fluid is related to the dielectric function by 

frk2 1 
8(w) Im - S(k, w )  = -- 

2nne2 E @ ,  U )  
(2.6) 

O(w) being the Heaviside step function. 
integration over energy transfer 

The static structure factor S(k) follows by 

S(k) = /: E S Q .  w )  

and hence the radial distribution function g(r)  is obtained by Fourier transform 

1 g(r) = 1 + - c [ S ( k )  - l]exp(ilc * T).  
N k  

The latter function, being by definition the probability that two particles be found at a 
relative distance r at any given time, allows an evaluation of the mean potential energy Ept 
per particle 

Finally, the ground state energy Eps is obtained by integration of Em over the coupling 
strength. The virial theorem ensures that the coupling strength is measured by r,. 

A number of sum rules and exact limiting behaviours are known for E(k, w )  and G(k ,  a) 
in the electron fluid [19-21] and are immediately translated to the boson plasma. Here we 
note for later reference the following exact relations: 

(i) the compressibility sum rule, which may be expressed as 

G(k,  0) = yk2 (kro <( 1) (2.10) 

with 

(2.1 1) 

where K and KO are the compressibility of the real fluid and of the ideal gas. Since K;' = 0 
for the Bose gas, the role of correlations in adding to the Coulomb repulsion an effective 
attractive interaction between the particles is equivalent to the inequality K < 0 at all r, > 0 
for bosons. 

(ii) the 6rst and third spectral mment  sum rules 

(2.12) 
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and 

(2.13) 

where op = ( 4 ~ n e ~ / m ) ’ / ~  and E ~ n  is the mean kinetic energy per particle. 
(iii).the Kimball-Niklosson relarions 

(2.14) 

and 

Equation (2.15) implies a self-consistency requirement between the asymptotic behaviour 
of the structure factor and the value of g(0) obtained from (2.8). 

3. Static-local-field approximations 

The RPA is obtained from (2.4) by setting G(k,  w )  = 0. The class of approximations that we 
examine in the following sections instead neglects the frequency dependence of the local 
field factor. From (2.4) and (2.5) we then have the excitation spectrum as 

where 

OJk = {@$ - G(k)I + @k2/2m)2}1’2. (3.2) 

Equations (2.6) and (2.7) yield 

S(k) = frk2/2mUk (3.3) 

which is the Feynman relation. Thus, self-consistency between dielectric response and 
liquid structure. leads for the boson plasma to the relation between S(k) and G(k) given in 
(3.2) and (3.3). 

The approximate closures that we evaluate below involve a further explicit expression 
of the local field factor in terms of the static structure factor. We consider, first of all, the 
STLS approximation 1131 in which this expression is 
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As mentioned in section 1, t h i s  approximation has already been explored for the boson 
plasma by Caparica and Hipolito [ 111 and by Gold [121. We consider next the approximation 
proposed by Vashishta and Singwi [14] 

where a is a parameter which allows one to add self-consistency on the compressibility 
through (2.10) and (2.11), with K evaluated from the ground-state energy. Finally, we also 
illustrate the results obtained in the Path&-Vashishta approximation [15] 

which satisfies the sum rule (2.13) with the exact mean kinetic energy being replaced by 
its ideal-gas value (&,, = 0 for the ideal Bose gas). We note that all these approximations 
miss the k2 term discussed by Holas [21] in the large4 behaviour of G(k, 0) and that only 
the STLS approximation satisfies consistency between the value of g(0) and the coefficient 
of the k4 term in (2.15). 

3.1. Numerical procedure 

The numerical results that we present in the following sections have been obtained by 
achieving self-consistency between structure factor and local field factor through an iterative 
method. At each value of r, we start from the RPA value G(k; rs) = 0 and continue iterations 
till input and output for G(k; ra) differ by an amount of order The rate of convergence 
is increased by using as input at each step a weighted average of the outputs from the two 
previous steps. 

The additional self-consistency with the compressibility sum rule in the VS scheme poses 
some delicate numerical problems in the evaluation of the derivative G(k; rs) with respect to 
r,. Slightly different results are obtained when the derivative is evaluated as the incremental 
ratio from two neighbouring values of r., as was done in the original calculation on the 
eleceon fluid [14], or by using input iiom three or more neighbouring values of r.. These 
errors affect the results for g(r)  at small r as well as those for G(k) at large k and become 
increasingly relevant with increasing r, above r, 5. For this reason the detailed results 
that we report in the following sections for the vs scheme do not extend beyond r, = 30. 
They are based on the original two-point-incremental-ratio procedure and our numerical 
difficulties will be evident in spurious oscillations in g(r) at small r .  Such oscillations may 
be smoothed away by allowing the self-consistency parameter Q to become a function of 
k with a smooth cut-off at large k, thus also recovering self-consistency with the Kimball- 
Niklasson relation (2.15). However, the location of the cut-off is arbitrary and, of course, 
the numerical results depend on it. 

4. Local field factor, fluid structure and correlation energy 

Figure 1 reports our results for the local 6eld factor G(k) in the STL.S and vs approximations 
over a range of r, from 1 to 30. A peak at kro 4 develops in G(k) with increasing r, and 
is especially marked in the VS result. According to (2.1). the effective intkaction arising 
from correlations between pairs of particles overbalances their direct Coulomb repulsion 
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in the range of  wavenumber where G(k) is above unity, leading here to a net effective 
attraction between the particles. The emergence of the peak in G(k) is a precursor of 
Wigner crystallization, the first star of reciprocal lattice vectors of the BCC lattice being in 
approximate correspondence with the position of the peak. Reference should be made to 
the work of Senatore and Pas tm [ZZ] in relation to Wigner crystallization of tbe degenerate 
electron fluid. The corresponding results for the static structure factor S(k) are shown in 
figure 2, the growing main peak in this function being clearly related to the peak in G(k). 

1.2 

1 - 0.8 
4: - 0.6 
U 

0.4 

0.2 

n 

STLS vs 

- 
0 5 10 15 20 0 5 10 15 20 

k r o  k ro 
Figure 1. Local held factor G(k) vepsus kro at Mlious values of,, in SILS and vs 

1.2 

1 

0.8 - 
4: 0.6 
tn 

0.4 

0.2 

0 

STLS vs 

0 2 4 6 8 0  2 4 6 8 

k r o  k ro 
F i i  2. Srmctun factar S(k) versus krg at Mlious values of rr in sm and VS. 

The parameter a obtained from self-consistency on the compressihility in the VS scheme 
shows weak dependence on r,, our numerical results being accurately reproduced by the fit 

a(rs) = 0.833 - 0.007 47r, + 6.63 x lo-%: (0 < r, < 30). (4.1) 
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These values are similar to those obtained for the electron fluid [ 141 and again exceed the 
value a = 1/2 that would apply to classical plasma treated in the same approximation. 
From this element of self-consistency we expect the vs results for G(k) to be quite reliable 
in the low-k region (see section 5 below). 

In fact, the VS scheme also yields satisfactory results for the pair distribution function, 
excepting the sd1-r region as discussed already in section 3.1. This is shown in figures 3 
and 4, which report g ( r )  at various values of r, in comparison with quantum Monte Carlo 
data from Sugiyama etal[13] and from unpublished calculations by Moroni. It is especially 
rewarding that the VS scheme reproduces the emergence of a first-neighbour shell from 
Coulomb repulsions with increasing coupling strength. The STLS results are somewhat more 
accurate only at low r, (see in particular the case r, = 1 in figure 3), while the shuctural 
predictions of the PV approach are quite poor at all r,. We infer from this comparison with 
the simulation data that the peak smctures shown by the VS G(k) and S(k) in figures 1 and 
2 are quite realistic. - 

0 U .. . . . . . .... .. .. . . . . . . . . . ... . . .. . . . . . .. .. .. .. . 

0 1 2 3 

.. . . . . . . .. . . .. . . . . . .. . . . . . .. . . . . . . . . 
I I , , ,  I , , ,  

0 1 2 3 

Figure 3. Radial dishibution funotion g(r)  Venus rfro at r, = 1 and rJ = 10 in m, M and 
PV. compared with quantum Monte Carlo data from 131. 

In summary, the quantitative usefulness of the approximations that we have examined is 
limited to the range of low-to-intermediate coupling strength, with a clear preference for the 
VS approach from the smctural point of view notwithstanding its numerical inaccuracies in 
the deep part of the Coulomb hole. The sns and vs approximations are also reasonably 
accurate in their predictions on the ground-state energy Egs(rs) and on the pressure P(rs). 
A comparison of our results with those obtained by variational methods and with Monte 
Carlo data is given in tables 1 and 2. Table 3 repom the self-consistent values of the inverse 
compressibility in the VS approximation. 

5. static screening 

We have already noticed in section 2 that the compressibility of the boson plasma is negative 
at all r. P 0, the ground-state energy being entirely due to correlations. In fact, the static 
dielectric function is negative at all r, P 0 over a range of reduced wavenumber kro which 
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1 

0.5 

0 

Figure 4. Radial distribution function g(r)  verms rla ai ‘I = 20 and r, = 30 in SN. Vs and 
w, c o m p e d  with quanNm M o m  Carlo dah f” S Moroni (unpublished). 

W l e  1. Values of -Em@$) for Ihe boson plasma (Rydberg/panicle). 

Dielectric appmach MO* WO variaiional 

0.1 

10 
20 
30 
50 
60 

100 

4.482 
0.7712 
0.4472 
0.3232 
0.2129 
0.1188 
0.06486 
0.04507 
0.M822 
0.M3 82 
0.01473 

4.496 
0.7830 
0.4578 
0.3326 
0.2207 
0.1238 
0.0675 
0.04674 
0.02921 
- 
- 

4.500 
0.7870 
0.4619 
0.3370 
0.2253 
0.1289 
0.07% 
0.051 12 
0.03259 
-. 
- 

- 
- 
0.453 57 - 

- 
- 
0.4531 

0.21663 
0.121 50 
0.06666 

0.02927 

0.015427 

- 

- 
- 

4.489 
0.7767 
0.4516 
0.3270 
0.2159 
0.1209 
0.06626 
0.046 19 
- 
- 
0.01533 

- 
0.7810 
0.4547 
0.3288 
0.2170 
0.1216 
0.06667 
0.4644 

0.02469 
0.01535 

- 

Table 2. Values of -P(r&n for the boson plasma (Rydkrglparticle). 

Dieleckic approach 

Variational’ rr - 
0.1 
1 
2 
3 
5 

10 
20 
30 
60 
80 
100 

SlLS 

1.129 
0.2002 
0.1185 
0.0870 
0.05868 
0.033 94 
0.01922 
0.01362 
0.007405 
0.005711 
0.004656 

vs 

1.129 
0.2007 
0.1193 
0.08799 
0.05985 
0.035 19 
0.02019 
0.01437 - 
- 
- 

PV 

1.129 
0.2037 
0.1192 
0.0878 
0.05967 
0.035 15 
0.02047 
0.01480 
- 
- 
- .  

- 
0.201 05 
0.11939 

0.059 115 
0.034488 
0.019544 

0.007532 
0.005817 
0.004750 

- 

- 
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lsble 3. Selfsonsistent values of -[nK(rs)l-' for the boson plasma in the vs approximadon 
@ydter&mW. 

r. 0.1 1 2 3 5 10 20 30 

-[nK(r.)]-' 1.41 0.251 0.149 0.110 0.0750 0.0443 0.0258 0.0184 

broadens with increasing r,. This is shown in figure 5, reporting l/&(k, 0) in the VS approach 
at values of r, from 1 to 30. Figure 6 compares OUT theoretical results for l/e(k, 0) at r, = 1 
and r, = 10 with the quantum Monte Carlo data of Sugiyama et al 131. It is clear that the 
vs achieves quantitative agreement with the simulation data, within their statistical accuracy 
and over the restricted range of wavenumber that they cover. Unfortunately, at r6 = 10 
this range does not extend much beyond the parabolic regime shown in (2.10) and it would 
be important to extend the simulation to higher values of k for a full test of the theory. It 
is also evident that the inclusion of short-range correlations through a local field factor is 
important for bosons even at low coupling. The RPA sets K-' = 0 in the dielectric function 
and hence misses completely the range of negative values fa ~ ( k ,  0). 

1 

0.5 

4 

-0.5 

-1 

Figure 5. R e c i p d  of the static dielectric function l / e (k ,  0) versus km at various values of 
rs in vs. The inset gives an enlarged view of the smaU-kro region. 
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r,= 1 
,.? 

.’I 
RPA 
STLS 

I VMC 
[I DMC 

...i’ . .. . . . . . . 

0.5 
h 

9 
X v 

_. 

--- < o  
4 

-0.5 

0 1 2 3 0 1 2 3 

k ro k ro 
Figure 6. Reciprocal of the static dielemic function 1/e(k. 0) versus kro at r, = 1 and r, = 10 
in RPA. SIUS, vs and w, campared with quantal simulation data fmm P1 (dots with ermr bars 
and rectangks are h m  variational Monte (2x10 and h m  diffusion Monte Carlo, respeaively). 

The behaviour of the static dielectric function shown in figures 5 and 6 implies 
overscreening of a charged impurity. The local pile-up of screening charge in the immediate 
neighbourhood of the foreign charge exceeds it and hence the displaced charge density 
oscillates in space, the local enhancements and depletions of charge being overemphasized 
as a consequence of the statistics. Evidently, the effective interaction between qui-charged 
impurities in the boson l7uid that one would estimate within a linear approximation is 
amactive over a substantial range of wavenumber, corresponding to distances which tend 
with increasing r, to extend down to the mean boson-boson distance. 

The asymptotic large-r behaviour of the screening charge density n&) around a point- 
like impurity canying unitary charge is 1111 

bZ 
2zr 

n,(r) -+ -(1 - y2b4)-1/2sin[br(l + yb2)1’21 exp[-br(1 - yb2)”*1 

where bro = (3rJ1I4. Figure 7 illustrates the behaviour of the quantity 4nr2n,(r) in the VS 
approximation at various values of r,. For instance, at r, = 10 we find by integration of 
4ar2ns(r) between its successive nodes that the amounr~ of screening charge contained in 
the first four shells around a unitary foreign charge are 1.57, -0.72, 0.18 and -0.04. 
The inclusion of the factor r:’4 in the abscissa in figure 7 is suggested by (5.1) and 
places the nodes of the screening charge distribution in approximate coincidence at different. 
values of r,. 

6. Longhdinal excitations 

A static-local-field approximation is clearly a most drastic one in the evaluation of the 
excitation spectrum. As is shown in (3.1) and (3.2). it yields for the boson plasma a 
longitudinal excitation with a dispersion curve which goes continuously from the plasma 
frequency op at k -+ 0 to the singlepaaicle recoil frequency hk2/2m at k + 00. One may 
recall the well known l i ta t ions  of the Feynman formula in accounting for the inelastic 
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-4 

i 
i - i. 

’\ i 
- i, i - \.-.’ 

- 

I I 

Figure 7. Screening charge density 4arzn,(r) amund a heavy impurity vmus ( r l ~ ) ? ! ’ ~  at 
various values of r, in vs. 

neutron scattering spectrum from liquid 4He [23]. The observed spechum contains a branch 
of collective excitations, including phonons (replaced by plasmons in the boson plasma) 
and rotons, as well as a broad multiexcitation component. The former branch flattens 
out and broadens away at about twice the hquency of the roton minimum, while the 
central frequency of the multiexcitation band increases with k and terminates at the recoil 
frequency. 

Equations (3.2) and (2.10) yield the dispersion of the plasmon at long wavelengths as 

(6.1) O J ~  = %(l- f y k 2  +. . .). 
Thus, within the present class of approximations the dispersion coefficient is directly related 
to the compressibility of the fluid and is negative at all values of r,. In a strongly correlated 
system less energy is needed to excite a vibrational mode in which the particles are partly 
localized. Notice that in the RPA the leading dispersion term is positive and of order k4. 

Bearing in mind that our results for the full dispersion curve of longitudinal excitations 
can only have an illustrative value, we report them in figure 8 at various values of r, in 
the VS approximation. It is easily seen that a ~ k  < op over the whole range of wavenumbers 
where the static dielectric function is negative: indeed, the latter may be written in the form 

(6.2) 1/@, 0) = 1 - OP/Ok. 2 2  
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Thus, the calculated dispersion curves go through a minimum, whose position and depth in 
reduced units increase with r,, before rising rapidly at higher wavenumbers on their approach 
to the singlepanicle parabola Similar but quantitatively different results are obtained in 
the STLS and PV approximations. 

I. Summary and dosing remarks 

We have seen that short-range correlations play a major role in the static and dynamic 
dielectric response of the boson plasma at zero temperature and that useful results can 
be obtained at low-to-moderate values of the coupling strength by means of approximate 
treatments that were developed quite some time ago for the degenerate electron fluid. With 
regard to the relative merits of the various expressions that we have considered in relating the 
local field factor to the structure of the fluid, we have found again that the thermodynamic 
self-consistency embodied in the vS scheme is crucial for quantitative accuracy in the 
evaluation of static screening, at least at relatively long wavelength. It also leads to 
substantial improvement in the description of how the local structure of the plasma develops 
with increasing coupling strength. 

The dispersion curves for longitudinal excitations that we have reported for the charged 
boson fluid show some remarkable qualitative features, but also provide an illustration of 
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the l i t a t ions  of our approach when they are contrasted with the more complex dynamics 
of liquid 4He. One may leam from them that there is a need to include some account of the 
frequency dependence of the correlation field factor, together with an explicit account of the 
correlations in the paaicle motions that are responsible for the real distribution of momenta. 
Some progress on these aspects of the theory has recently been made for two-dimensional 
electron fluids [24] and a parallel theoretical effort on bosons and fermions may be helpful 
to disentangle the effects due to Coulomb correlations and those due to exchange and the 
exclusion principle. 
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